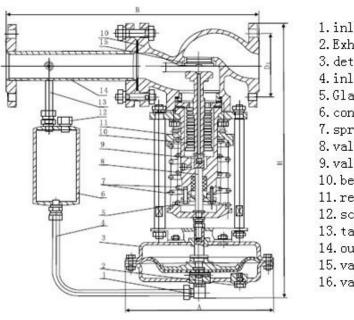

ZZYP TYPE AUTOMATIC PRESSURE REGULATING CONTROLL VALVE

OPERATION INSTRUCTION

Catalogue

1. Application and feature	1
2. Structure and working principle	1-2
3. Main technical data and property index, material	3-5
4. Installation, operation, maintenance	5-9
5. How do order	10
6.The type of ZZYP pressure regulating valve	11
7.The size of flange	12

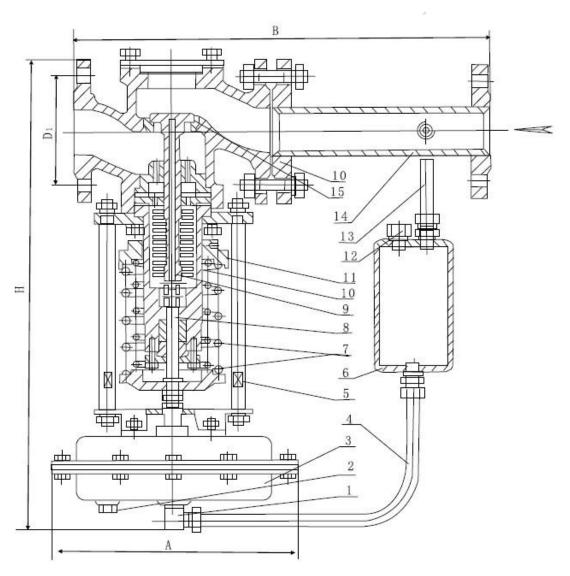

1. Application and feature

ZZYP type pressure regulating valve is a self-regulating actuator product that reply on the medium's energy to realize regulation fucntion without any extra energy. The most important feature of the product is that it can work without electricity and gas power which is very saving energy. And we can adjust the pressure value when it is working. This valve is widely used in oil, chemical, electricity, metallurgy, food, light textile, machinery and residents buildings and etc industries to control the gas, liquid and steam to reduce pressure, inlet pressure regulation, or relief pressure, outlet pressure regulation. This valve is performing fast and with very good seal.

2. Structure and working principle

The control valve is consisted of detecting actuator, regulating control valve, condenser and outlet pipe. (the structure as drawing 1).

Drawing-1a is pressure regulating valve used for controlling outlet pressure. Mode of action is pressure closed. The working principle is: medium flow into the valve body, then into valve core, and then throttling by valve seat then flow out. The other way is used when the medium is steam, the medium go through condenser and goes into the actuator and act on the diaphragm, at the same time the valve core's place is also changed, in this case the valves realize to reduce pressure and steady pressure. If outlet pressure is increased, the power acting on diaphragm is increasing accordingly, then the spring is compressed and drive valve core, than the opening channel is becoming smaller and smaller until the outlet pressure reduced the set value. The same principle, if outlet pressure is decreased, the power that act on diaphragm is decreasing, because of compress spring's Reacting force it can drive the valve core, than the opening channel is becoming bigger and bigger until the outlet pressure increased the set value.



- 1. inlet ferrule
- 2. Exhaust plug
- 3. detection actuator
- 4. inlet pipe
- 5. Gland screw
- 6. condenser
- 7. spring
- 8. valve rod
- 9. valve core
- 10. bellows
- 11. regulate pressure plate
- 12. screws
- 13. take prssure pipe
- 14. outlet pipe
- 15. valve seat
- 16. valve body

Drawing-1a ZZYP-16B pressure regulating valve

JONENG VALVES CO., LIMITED

Drawing-b. is pressure regulating valve used for controlling inlet pressure. Mode of action is pressure open type. The working principle is: medium flow into the valve body as the direction of arrow, The other way is used when the medium is steam, the medium go through condenser and goes into the actuator and act on the diaphragm, at the same time the valve core's place is also changed, in this case the valves realize to reduce pressure and steady pressure. If inlet pressure is increased, the power acting on diaphragm is increasing accordingly, then the spring is compressed and drive valve core, than the opening channel is becoming bigger and bigger until the inlet pressure reduced the set value. The same principle, if inlet pressure is decreased, the power that act on diaphragm is decreasing, because of compress spring's Reacting force it can drive the valve core, than the opening channel is becoming smaller and smaller until the outlet pressure increased the set value.

Drawing-1b ZZYP-16B pressure regulating valve

1.inlet ferrule	2.Exhau	ıst plug	3.detection	on actuator	4.inlet pipe	5.Gland	screw	6.condenser
7.spring	8.valve r	od	9.valve core	10.bellows	11.regulate	pressure	plate	12.screws
13.take pressure j	pipe	14.outle	et pipe	15.valve seat	16.valve body			

3. Main technical data and property index ,material

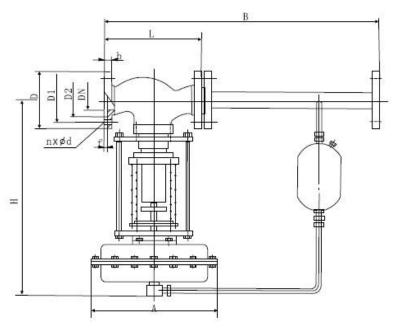
1)Main technical data and property index

Form 1

size	DN (mm)	20	25	32	40	50	65	80	100	125	150	200	250	300
flow co	efficient(Kv)	7	11	20	30	48	75	120	190	300	480	760	1100	1750
Flo	(mm)	8		1	0	14	2	20	25	4	0	50	60	70
Pressu	repn (MPa)			•			1. 6	. 4.0.	6. 4			•	•	•
Press	sure (Kpa) ate rage	15~50 40~80 60~100 80~140 120~180 160~220 200~260 240~300 280~350 330~400 380~450 430~500 480~560 540~620 600~700 680~80 780~900 880~1000 600~1500 1000~2500								80~800				
Flow	feater			Quio	k opt	en								
Regulate j	precision(%)							± 5						
Tempera	iture (℃)							<350)					
Allowed leak	Hard seal (1/h)	Single seat≤10 ⁻¹ Valve's nominal capacity(Ⅳ级); Double seat :《5×10 ⁻³ Valve's nominal capacity (Ⅱ级)							级)					
quantity	Soft seal (nl/h)	0. 1	15	7.0	30	0.45	THESE SONE OF	0.90	1.7	4.	0	6.75	11.10	11.60
Pressure reducing	Max	10												
ratio	Min	Ain 1.25												

2) Pressure regulating rang

Pressure regulating rang has several stages, details please see the form of Main technical parameters and property index. It is better to choose the middle value of the pressure range. (refer form1).


3) Outlet pressure regulating valve and relation between inlet pressure and out pressure.

Automatic regulating valve is a regulating system and there is some requirements for reducing pressure . For B type outlet pressure regulating valve , in order to guarantee the outlet pressure in a proper range , the inlet pressure must achieve a proper number . Requirement please see Form 2.

Form2

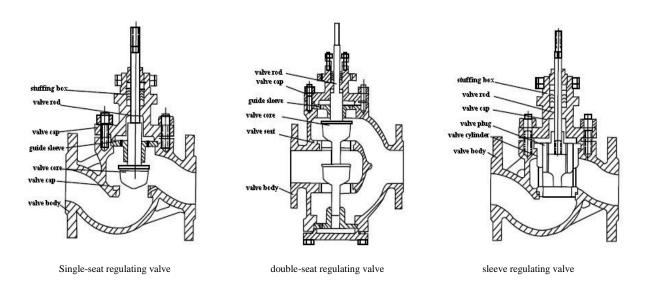
Inlet pressure KPa	30	50	100	150	200	250	300	350	400	450	500	550	600
Outlet pressure KPa	15~24	15~40	15~80	15~120	20~160	25~200	30~240	35~280	40~320	45~360	50~400	55~440	60~480
Inlet pressure KPa	650	700	750	800	850	900	950	1000	1250	1500	2000	2500	3000
Outlet pressure KPa	65~ 520	170~ 560	75~ 600	80~ 640	85~ 680	90~ 720	95~ 760	100~ 800	125~ 1000	150~ 1200	200~ 1600	250~ 2000	300~ 2400

Sharp dimension drawing

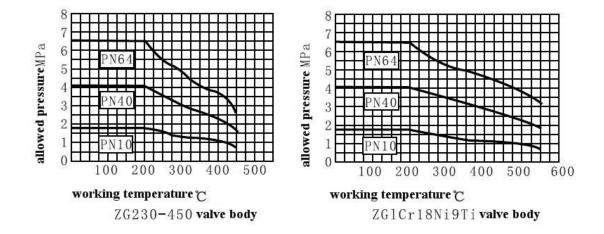
4)Sharp dimension and weight

Unit:mm

Form 3

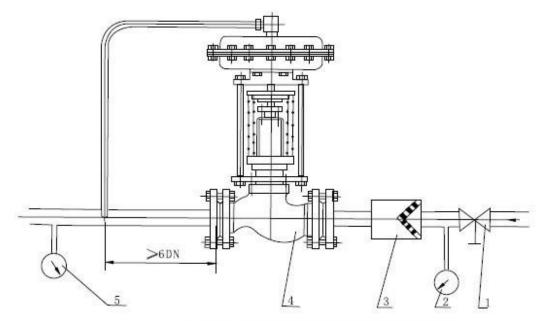

	Size DN		20	25	32	40	50	65	80	100	125	150	200	250	300
Flange's adapter size B		38	383		512		862		1023	1380		1800	2000	2200	
	e face to imension		150	160	180	200	230	290	310	350	400	480	600	730	850
	15 140	Н	4	75	5	20	540	7	10	780	840	880	915	940	1000
Pı	15-140	A	28	80			30 3	,		308	· ·			(A)	
ress	100 000	Н	455		50	00	520	69	90	760	800	870	880	900	950
шe	130-300	Α					<u>.</u>		230	A		-		!	-
reg	000 500	Н	450		490		510	68	30	750	790	860	870	890	940
ulat	280-500	A			176		30 3	194			280				
Pressure regulate range	400 1000	Н	4	45	5 480			6'	70	740	780	850	860	880	930
nge	480-1000	A			176			194			280				
KPa	000 1500	Н	4	45	5	70	600	82	20	890	950		1000	1100	1200
Kra	600-1500	A	8	5			30 3	,		96					
	1000 2500	Н	4	45	570		600	82	20	890	950		1000	1100	1200
	1000-2500	A	8	5				96							
V	Veight kg	100	2	6	3	17	42	72	90	114	130	144	180	200	250
Ad	laper's scre	w			<i>y</i>			1	M16□1.	5	V 51		10	(A)	

5)Main parts' material (Form 4)

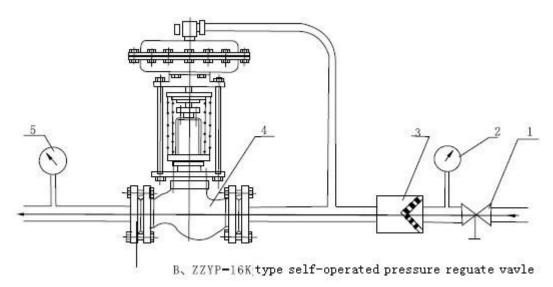

Form 4

Parts' name	Metarial					
Valve body	ZG230-450、ZGlCr18Ni9Ti、ZGCr18Ni12Mo2Ti					
Valve core	lCr18Ni9Ti、Cr18Ni12Mo2Ti					
Valve seat	lCr18Ni9Ti、Cr18Ni12Mo2Ti					
Valve rod	lCr18Ni9Ti、Cr18Ni12Mo2Ti					
Rubber diaphragm	Chemigum, EPR, FKM, Oil resistant rubber					
Diaphragm cap	A3、A4 Steel coated TFE					
Filter PTFE, soft graphite						

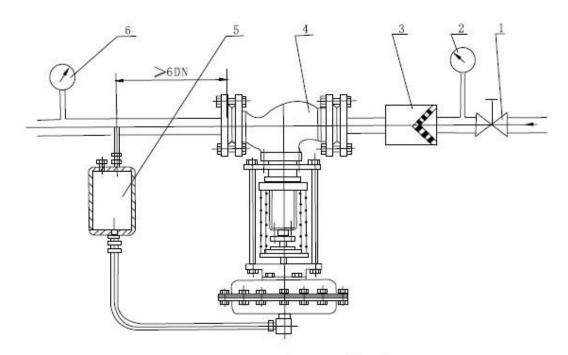
Valve core structure types


Valve body working temperature and allowed pressure

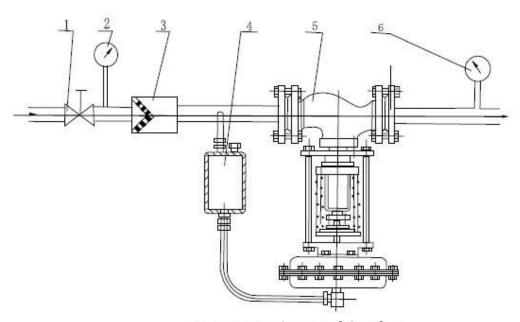
4. Installation ,use and maintenance


1)Installation

When the valve is working in gas or other low viscous liquid medium (normal temperature (≤ 80 C), the valve is installed on horizontal direction in upright direction like pneumatic diaphragm regulating valve. Details as drawing 3.


A. ZZYP-16B type self-operated pressure valve

1. globe valve 2.pressure gauge 3.filter 4.self-operated pressure regulating valve 5.pressure gauge

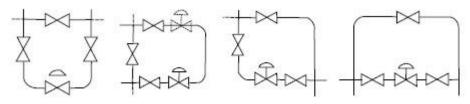


Drawing 3 Installation: The medium is gas or other low viscous liquid

If the medium is steam , the regulating valve must be installed on horizontal pipe in inverted direction . As drawing 4 .

A, ZZYP-16B type regulate valve

B, ZZYP-16K type regulate valve


1.globe valve 2.6. pressure gauge 3.filter 4.condenser 5.regulating valve Drawing 4 Installation : the medium is steam

When you install the valve pleas note these points:

A)Condenser must be higher than valve's actuator but lower than outlet's connecting pipe (for outlet regulating valve) or inlet's connecting pipe (for inlet regulating valve), to guarantee the condenser is filled with condenser liquid.

B)Pressure measuring point should take a suitable place, inlet pressure valve should be further than 2 times of the pipe diameter, outlet regulating valve should be further than 6 times of pipe diameter.

C)In order to convenient for maintenance and operation ,there is be leaving some space for the regulating valve. Before and after the valve, there should be installing globe valve and bypass manual valve. Details as drawing 5

Drawing 5 installation plans

Note: The dotted line' meaning: another proper direction for inlet and outlet.

D)If the regulating valve size is too large (DN≥100), should install bracket.

E)Medium flow's direction should be the same as the arrow on the valve body. Inlet and outlet pipe center, regulating valve's flanges center must be in line to avoid valve body bearing too heavy stress.

F) Before the regulating valve, we should set a filter to avoid blocked by impurities in the medium .

G)Regulating valve should be installed in proper environment that the temperature is -25 $^{\circ}$ C ~~55 $^{\circ}$ C .

2. Usage

Operational program for gas or low viscosity at normal temperature . See drawing 3.

A).

B)Loosen exhaust plug until the gas or liquid flow out from actuator.

C)Than tightened exhaust plug , the regulating valve can working now . The pressure can be adjusted by pressure regulate plate . Pay attention to the pressure value , action should be slow , don't let valve rod moving with .

Operational program for steam. See drawing 4.

A)remove the entrance screws from condenser .

B)Loosen exhaust plug

C)Use drain head to add water through entrance mouth until water flow out from vent .

D)Tighten exhaust plug, continue adding water until it flow out entrance .

E)Tighten screws of entrance.

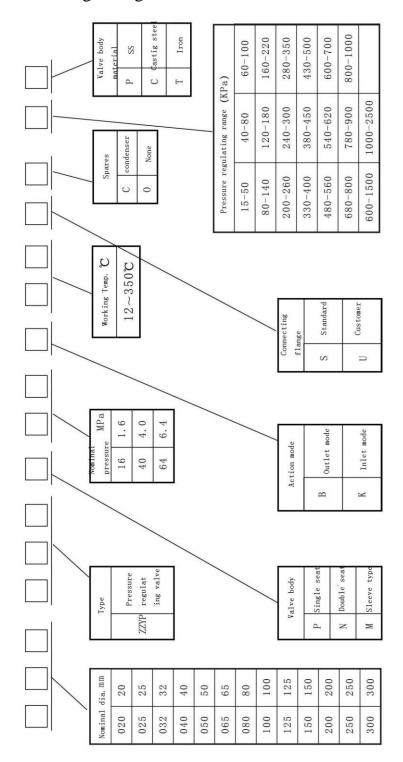
F) Open the globe valve before and after the regulating valve slowly

G)Adjusted pressure regulate plate, and pay attention to the pressure number until achieve the requirement .

3. Maintenance

After the regulating valve is running normally, generally maintain workload is very small, only need to observe the pressure value is whether at the proper rang that suit for your application . And observe whether the stuffing box and actuator is leaking . If it is leaking, please tighten or replace padding and diaphragm.

Form 5


Fault phenomenon	Reason	Method
Outlet pressure is changing	1.valve core get stuck	1.disassemble and
when inlet pressure	2. Valve rod, plush rod get	reassemble again
changes	stuck	2.Adjusted again
	3.Entrance pipe locked.	3.Dredge
Outlet pressure can't	1.set spring stiffness too large	1.replace spring
decrease, staying higher	2. Valve dia. too big	2.Use less size diam.
than requirement value	3.Inlet pressure too high,	valve
	pressure reducing ratio too	3.Inlet pressure: if
	large	outlet pressure >10:1,
		should be decrease two
		stage's pressure
Outlet pressure can't	1.set spring stiffness too light	1.replace spring
increase, staying lower	2. Valve dia too small	2.Use large size diam.
than requirement value	3. pressure reducing ratio too	3.Inlet pressure:if
	small.	outlet pressure <1:25,
		should be increase inlet
		pressure
Inlet pressure can't	1.spring stiffness too light	1.replace spring
increase, staying lower	2. Valve core locked	2.dismounting again
than requirement value	3. Valve rod, plush rod locked	3.adjust again
	4.valve cord, valve seat is	4.grinding again or
	damaged, leaked too heavy	replace
	5.valve's dia too large	6.lessen diam
inlet pressure can't	1. stiffness too big	1.replace spring
decrease, staying higher	2. Valve dia too small	2.Use large size diam
than requirement value	3.valve core, valve rod, plush	3.Solve locked and
	rod are locked	adjust again
Outlet pressure or inlet	1.valve dia too large	1.choose proper size
pressure changes too often	2.Actuator's capacity is too	diam
	less	2.Add damper at
		entrance pipe

H How to order

When ordering please offer these information:

Name
Nominal pressure
Action mode
Working temp.
Set flow feature
Max outlet pressure
Min outlet pressure
Normal outlet pressure
Liquid viscosity
Liquid severe
Gas severe
Remarks
Other requirements like collision resistant
00111010111011011011

I. ZZYP regulating valve model

Example

050ZZYP10B12S0280-350P means the valve diameter is 50mm, valve seat pressure is 1.0MPA, the valve is outlet pressure regulating valve, the flanges is standard type, without condenser, pressure regulating range is 280-350KPA, the valve material is stainless steel.